

institute for art, science and technology

Microbiological techniques Biohack Academy #3

Morning

- Make agar
- Sterilise agar
- Pour plates

Afternoon

- Contamination test
 - \circ Environment
 - o Sterile hood

- Yelly substance from algae
- Sugar
- Used for:
 - Food (subtitute gelatin)
 - Microbiology

- Angelina Fanny Hesse
- Walter Hesse
- Robert Koch

- 1. Microorganism causing diease must be found in abundance in all organisms suffering from disease, but not in healthy organisms.
- 2. The microorganism must be isolated from a diseased organism and grown in pure culture
- 3. The cultured organism should cause disease when introduced into a healthy organism
- 4. The microorganism must be reisolated from the inoculation, diseased exprimental host and being identical to the original host.

- Angelina Fanny Hesse
- Walter Hesse
- Robert Koch
- Julius Richard Petri

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC374482/ wikipedia

Types of Agar

- Non-selective medium suitable for bacteria
- 1000 mL Demi-water contains (pH ~4.7):

Compound	Amount (g)
Yeast extract	2.0
Peptone	5.0
NaCl	5.0
Agar	15.0

- Alternatives:
 - Yeast extract \rightarrow beef extract
 - Peptone (*amino acid, peptides, proteins*) → peptic digest of animal tissue
 - NaCl (salt) \rightarrow Table salt
 - Agar (*jelling agent / sugar*) → Gelatin

- Non-selective medium suitable for yeasts, fungi
- 1000 mL Demi-water contains (pH ~5.5):

Compound	Amount (g)
Malt extract	30.0
Agar	20.0

• Alternatives:

- Malt extract \rightarrow boil malt in water
- Agar (jelling agent / sugar) → Gelatin

- Normal pH: 7.0
- Acid (low pH): 0-7
- Basic (high pH): 7-14

	Acid	Base
What does it do?	Release a proton or hydrogen ion (H ⁺)	Release a proton or hydrogen ion (H ⁺)
Chemical	HCL	NaOH
Alternatives	Citric Acid	NaHCO ₃
Alternatives	Aquarium shop (pH/KH minus)	Aquarium shop (pH/KH plus)

Calculations

Nutrient Agar (per 1000 ml)

Compound	Amount (g)
Yeast extract	2.0
Peptone	5.0
NaCl	5.0
Agar	15.0

250 ml

Compound	Amount (g)
Yeast extract	0.5
Peptone	1.25
NaCl	1.25
Agar	3.75

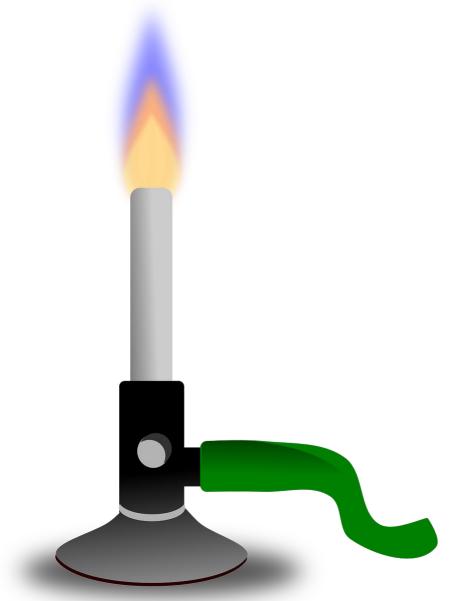
Malt agar (per 1000 ml)

Compound	Amount (g)
Malt extract	30.0
Agar	20.0

250 ml

Compound	Amount (g)
Malt extract	7.5
Agar	5

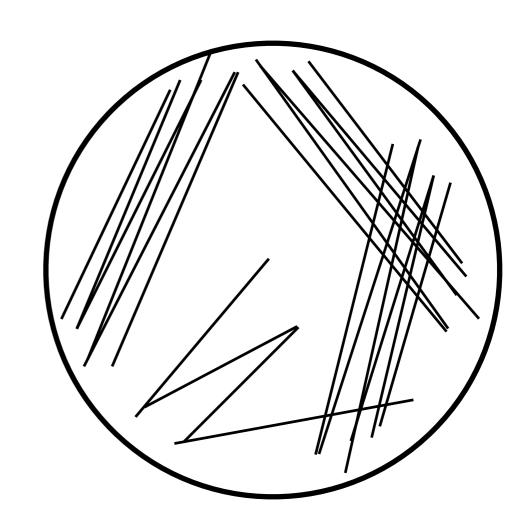
- 1. Tie your hair
- 2. Wash your hands
- 3. Put on lab coat
- 4. Put on glasses
- 5. Clean your work space with alcohol


- 1. Dissolve Agarmix in water
- 2.

- 1. Dissolve Agarmix in water
- 2. Autoclaving for 20 min

- 1. Dissolve Agarmix in water
- 2. Autoclaving for 20 min
- 3. Let agar cool down to room temperature

- 1. Dissolve Agarmix in water
- 2. Autoclaving for 20 min
- 3. Let agar cool down to room temperature
- 4. Pour the plates



- 1. Dissolve Agarmix in water
- 2. Autoclaving for 20 min
- 3. Let agar cool down to room temperature
- 4. Pour the plates
- 5. Let plates dry

- 1. Dissolve Agarmix in water
- 2. Autoclaving for 20 min
- 3. Let agar cool down to room temperature
- 4. Pour the plates
- 5. Let plates dry
- 6. Inoculation of plates

- 1. What is your project idea?
- 2. Documentation site: show your documentation site
- 3. Plan for coming week
- 4. Crazy cool stuff? / Other comments

some rights reserved

CC

my To Join And Lov